
Toward Distributed Streaming Data Sharing Manager for
Autonomous Robot Control

Hiroaki Fukuda1, Ryota Gunji2, Tadahiro Hasegawa3, Paul Leger4 and Ismael Figueroa5

Abstract— Using robots is demanding for supporting our
lives and/or covering works that are not suitable for human
beings. The robot software implementation requires a variety
of knowledge and experiences. Thereby developing cost for
such software systems is now increasing. Middleware systems
such as Robot Operating System (ROS) are being developed
to decrease such cost and widely used. Streaming data Sharing
Manager (SSM) is one of such middleware systems that allow
developers to write and read sensor data with timestamps using
a common PC. This feature enables developers to control a
robot by taking account of measured time. This control is
important because using multiple sensor data with different
timestamp cannot allow developers to control a robot correctly.
SSM assumes that only one PC is used to control a robot,
therefore if it exists a process that consumes much CPU
resource, other processes cannot finish their assumed deadlines,
leading to the unexpected behavior of a robot.

This paper proposes an architecture called Distributed
Streaming data Sharing Manager (DSSM) that enables to
distributing each process on existing SSM to different PCs. We
investigate the current architecture and behavior of SSM, then
propose a new architecture that can achieve our goal. Finally,
we apply DSSM to an existing SSM based robot control system
that autonomously controls an unmanned vehicle, then confirm
the effectiveness of DSSM by measuring the resource usages.

I. INTRODUCTION

Robotics is a hot topic which will support our lives
[5] [6] and/or cover some tasks that are not suitable for
human beings shortly. A robot consists of several sensors,
actuators, thereby developing a software system that controls
the robot (we call this software as a robot control system
in this paper) needs a variety of field’s knowledge and
experiences. Middleware systems such as Robot Operating
System (ROS) [7] [8] and/or RT-Middleware (RTM) [3] [9]
[4] are now being developed to decrease the developing cost
and are widely used nowadays [3] [7]. Streaming data Shar-
ing Manager (SSM) [1] is one of the middleware systems
for developing a robot control system using a common PC.
In a robot control system, a single process is in charge
of measuring data using a sensor or handling an actuator,

1Hiroaki Fukuda is with Department of Computer Science
and Engineering, Shibaura Institute of Technology, Japan
hiroaki@shibaura-it.ac.jp

2Ryota Gunji is with Graduate School of Electrical Engineern-
ing and Computer Science, Shibaura Institute of Technology, Japan
ma19030@shibaura-it.ac.jp

3Tadahiro Hasegawa is with Department of Electrical
Engineerning, Shibaura Institute of Technology, Japan
thase@shibaura-it.ac.jp

4Paul Leger is with Escuela de Ingenieı́a, Universidad Católica del Norte,
Chile pleger@ucn.cl

5Ismael Figueroa is with Escuela de Auditorı́a, Universidad de Val-
paraı́so, Chile ismael.figueroa@uv.cl

meaning that a robot control system consists of multi pro-
cesses. Suppose that we need to use multiple kinds of sensors
and actuators to implement a robot control system. In this
robot control system, we will create a process that mainly
controls the entire system (we call this process as a main
process), meaning that the main process needs interprocess
communications (shortly IPCs) among other processes that
are in charge of measuring sensor data because the main
process will decide the entire behavior of the robot referring
to multiple sensor data. In this situation, the timestamps of
measured sensor data are important because the main process
cannot control the entire system correctly if it uses multiple
sensor data with different timestamps.

SSM provides developers with useful APIs that hide
complexities regarding timestamps from developers. A robot
control system that uses SSM is also running as multiple
processes in a PC, thereby SSM provides shared memories
for the IPCs among processes Because of this restriction, a
process with a heavy load that will consume CPU power
might affect other processes, leading to the delay or an
unexpected control of a robot.

This paper proposes an SSM based new middleware
system called Distributed Streaming data Sharing Manager
(DSSM) that enables to distributing each process on different
PCs while existing software systems that use SSM do not
need to be modified as much as possible by designing
DSSM’s architecture. DSSM introduces TCP/IP communi-
cations to divide multiple processes, that were running on
a PC, into multiple PCs, then provides similar APIs that
SSM has provided already with developers. Also, we apply
DSSM to an existing SSM based robot control system that
autonomously controls an unmanned vehicle, then observe
its behavior and measure the resource usages to verify the
prototype implementation of DSSM.

The remainder of this paper is organized as follows.
Section II describes the SSM architecture and Section III
explains the DSSM architecture and main components. Sec-
tion IV presents an experiment and results then show the
efficiency of DSSM compared to SSM. Section V discusses
related work and Section VI finally concludes this paper with
future work.

II. SSM: STREAMING DATA SHARING MANAGER

In this section, we describe the background of SSM, which
means the difficulties of controlling autonomous robots and
requirements. Then, we briefly explain the architecture of
SSM.

 Proceedings of the 2020 IEEE/SICE
International Symposium on System Integration
 Honolulu, Hawaii, USA, January 12-15, 2020

978-1-7281-6667-4/20/$31.00 ©2020 IEEE 862

SSM

Sensor A
SSM
APi

Sensor B
SSM
APi

Sensor C
SSM
APi

Shared Memories

Shared Memory1

Shared Memory2

Shared Memory3

User Process A
SSM
APi

User Process A
SSM
APi

read/write

requests (e.g., create/search)

PC1

data + timestamp

Fig. 1. The usage of SSM

A. Difficulties of controlling autonomous robots

An autonomous robot generally uses a variety of sensors
that measure several values such as velocities, directions
and the distance to objects. A robot control system detects
the environment and reacts to avoid unexpected behaviors.
Besides, a complicated software system should consist of
several modules because of the customizable and extensible
requirements. Suppose that we implement a robot control
system that controls an unmanned vehicle. The vehicle
should stop as soon as it detects a human being in front of it.
The robot control system may use a camera to detect a human
being, then stop the engine or put on the brake as reactions.
In this scenario, we will implement this robot control system
using two modules: The first module uses a camera to detect
human beings then write the result (e.g., the camera detects
human beings or not). The second module reads the result
and reacts (e.g., stop the engine). These modules are usually
run as different processes. In this scenario, as we mentioned
in Section I, timestamps are also important in addition to raw
sensor data. This is because, in this scenario, the first module
periodically writes the result, therefore the second module
has to choose the adequate one from the results written by
the first module. Therefore it is desirable to manage data
measured by sensors with timestamps. SSM is a middleware
system that hides complexities of managing timestamps and
provides APIs that allow developers to write and read data
using timestamps.

B. Architecture of SSM

We show an usage of SSM in Figure 1. SSM uses shared
memories for IPCs because it assumes that all modules are
run on a single PC even though each module will be run
as different processes. SSM provides APIs, called SSMAPi,
to handle the shared memory (e.g., create, read, write and
delete). With these SSMAPis, timestamps are implicitly
added to each measured sensor data. In addition, we call
a program that measures sensor data as sensor handler. In
Figure 1, “Sensor A”, “Sensor B” and “Sensor C” are sensor
handlers, then they use SSMAPi inside. In SSM, a sensor
handler firstly sends a request to SSM in order to create a

SSM

PConnector

SSMProxy
Data

Communicator

Sensor Handler

Sensor
Handler

User
Process

DSSM

Fig. 2. DSSM Architecture

shared memory. The sensor handler also sends an identifier to
distinguish the shared memory it creates and uses. When the
SSM has successfully created the shared memory, it returns
the pointer of the shared memory to the corresponding sensor
handler. The sensor handler can directly write any data to the
shared memory via SSMAPi.

Besides, a program that controls a robot (we call User
Process in Figure 1) needs to read data stored in shared
memories. The program sends a lookup request for finding
a certain shared memory to SSM using an identifier, then
SSM returns the pointer of corresponding shared memory.
Once the program obtains the pointer, it can directly read
data from the shared pointer by specifying timestamps via
SSMAPi. The details of complicated processes (e.g., creating
shared memories) are hidden by SSM, therefore developers
can easily use these functions. Moreover, SSMAPi is not only
be used for creating new shared memory but also be used
for other requests to SSM such as terminating or searching
existing shared memory. SSM uses a message queue system
as an IPC and handles more than one request at a time.

SSM was designed as a middleware system with which
developers can implement a robot control system using
multiple processes because of several requirements such as
customizability and extensibility while minimizing the delay
of IPCs, result in using shared memories. On the other
hand, using shared memories makes it impossible to run
each process on different PCs. As a result, a process that
intensively consumes CPU power such as image processing
affects the entire behavior of the system because these
processes generally use the same CPU. In fact, we developed
a robot control system that controls an unmanned vehicle
using SSM. This software system uses a camera to detect
objects for avoiding crashes, then using camera intensively
consumes CPU power. As a result, we could not stop the
vehicle before hitting an object even though the camera
detected it. To avoid this situation, we decreased the speed
of the vehicle, which was a compromised solution.

III. DSSM: DISTRIBUTED DATA SHARING MANAGER

In this section, we explain the details of DSSM that is our
proposal in this paper. We firstly illustrate the architecture
of DSSM, then explain the main components in DSSM. We
lastly describe the synchronized problem that is a side effect
introducing DSSM, and the corresponding solution.

863

Shared
Memories

Shared Memory1Sensor A
SSM
APi

SSM

Shared Memory2Sensor B
SSM
APi

User
Process 1

SSM
APi PCON

PC2

SMP
SSM
APi

SSM
APiDC

Sensor C
SSM
APi

SSM

Shared
Memories

Shared Memory1

User
Process 1

PCONShared Memory2
User

Process 2
SSM
APi

SSM
APi

PC1 PC3

SMP
SSM
APi

SSM
APiDC

TCP

Connection
TCP

Connection

SMP

PCON

DC

PConnector

SSMProxy

DataCommunicator

read/write

requests (e.g., create/search)

Fig. 3. Use case of DSSM

A. Architecture of DSSM

In Figure 2, we show the new architecture that enables
to distributing existing processes to different PCs while
minimizing changes of existing programs. We use the current
architecture of SSM in which all programs are running as
processes. We will give an additional IPC using network
without modifying the core of SSM. We added the following
three main components:

SSMProxy: This component will be run on the PC where
an SSM is running. SSMProxy will accept requests from
clients (i.e., PConnectors), and they behave as sensor han-
dlers in existing SSM, meaning that SSM will accept requests
from SSMProxy directly.

DataCommunicator: This component will be instantiated
when a shared memory is created in SSM. From a shared
memory viewpoint, this component directly writes/reads data
to/from the shared memory.

PConnector: This component will be used sensor handlers
that write measured sensor data to SSM which is running
on the different PC. PConnector directly sends/receives data
to/from SSMProxy using TCP connections.

B. Behavior of each component

We show the use case of DSSM in Figure 3. In DSSM,
SSMProxy on the same PC where SSM runs as an isolated
process. When SSMProxy accepts a request from a PCon-
nector, it creates a child process to use fork system call,
then the child process will handle all requests sent from
the corresponding PConnector. This is because the original
SSM handles requests from more than one sensor handlers
at a time, then we will keep this architecture in our new
architecture using network. The SSMProxy uses SSMAPi to
send requests to SSM such as creating or deleting shared
memories, meaning that an SSMProxy seems to be a sensor
handler from SSM viewpoint.

On the other hand, a sensor handler, which needs to access
a shared memory across the network, utilizes PConnector
in DSSM. The implementation of a sensor handler needs

TABLE I
TIME DELAY BETWEEN NTPSERVER AND PC USING NTPD

Average Max Min Standard Deviation
offset(ms) 1.41 5.93 0.015 1.20

to be changed from SSMAPi to using PConnector. Even
though this change will be required, we will minimize
the changes by applying similar interfaces provided by the
current SSMAPi. Because of this, developers will be able
to get familiar with PConnector soon. PConnector will be
in charge of communicating with SSMProxy and DataCom-
municator using TCP connection. As shown in Figure 3,
we can utilize SSMAPi and PConnector at the same time
like Sensor handler2 within PC2, meaning that this allows
developers to design a software system more flexibility. For
example, this enables to write processed data to other PC
using PConnector after writing to raw data to local shared
memory using SSMAPi.

When an SSMProxy receives a request which offers to
create a shared memory, the SSMProxy sends a request
to SSM running on the same PC, then it also creates an
instance of DataCommunicator to handle write/read data
from a PConnector. The DataCommunicator will be run as
a different thread. This is because a sensor handler in the
original SSM can write data to more than one shared mem-
ory. A single TCP connection between a PConnector and
the corresponding SSMProxy cannot provide this behavior.
Thereby every DataCommunicator will open a socket to
make a connection to a PConnector, then write data sent
from the PConnector to the shared memory or send the data
from the shared memory to the PConnector.

With these three additional components, we can run ex-
isting software systems that use SSM as distributed manner
while minimizing modifications.

C. Time synchronize problem and a solution

As we mentioned in Section II-A, controlling autonomous
robots requires not only raw sensor data but also their

864

Fig. 4. Shape of our autonomous controlled robot and equipped sensors.

measured timestamps. SSM assumes that all modules of a
software system using SSM are running on a single PC.
Thereby all modules share the same clock, meaning that we
do not need any concerns about time synchronization. On
the other hand, in DSSM, these modules are distributed in
different PCs in which each PC has its own clock. There
are several proposals to handle this problem [10] [11] [12].
Then, we use Network Time Protocol (NTP) [11] to tackle
with this problem concering the balance of a requirement
and delay. We run a NTP daemon (NTPD) in a PC (PC1 in
Figure 3), then other PCs synchronize the time to the PC.
Using two PCs, we measured the offset using NTPD as an
average of 140 evaluations of the offset value. Table I shows
the result where the maximum offset was less than 6(ms) and
the average was about 1.5(ms). As we explain in Section
IV, these results satisfy the requirement of controlling an
autonomous robot in this paper.

IV. EXPERIMENT AND EVALUATION

As we mentioned in Section II-B, we developed a robot
control system that controls an unmanned vehicle using
SSM. We show the vehicle in Figure 4. This vehicle mainly
equips three sensors: (1)Encoders to measure wheel odome-
tries that are used to estimate the position of the vehicle.
(2) Light Detection and Ranging (LIDAR) that measures
the distance to objects to estimate a position of the vehicle
using the scan matching, and also avoid crashes. (3) Inertial
Measurement Unit (IMU) that measures an angular velocity
to estimate a yaw angle of the vehicle.

We run 5 processes to control the vehicle: three processes
are for measuring sensor data, one process is for estimating
the position of the vehicle using measured sensor data and
the main process controls the vehicle reacting the estimated
position.

Figure 5 shows the map used in this experiment and the
trajectory of the vehicle. The robot autonomously runs from
START to GOAL while rounding the circle object. In Figure
5, (1) represents the trajectory and (2) shows the estimated
position of objects (i.e., walls in this case) that correctly
matched the map. In this experiment, we use three PCs (PC1,

Fig. 5. Map and trajectory of the unmanned vehicle with DSSM

TABLE II
COMPARISON OF CPU USAGE ON PC1

user nice system iowait steal idle
PC1 SSM 37.55 0.08 2.53 0.29 0.00 59.55
PC1 DSSM 31.08 0.15 4.81 1.19 0.00 62.78

PC2, PC3) with DSSM. We attached the encoder and IMU
to the PC1 while LIDER was attached to PC2. The viewer
was running on PC3 for us to confirm the behavior of the
vehicle. Besides, as shown in Figure 5, we confirmed that this
vehicle could be controlled by distributed manner without
any problems. Note that, in the current implementation,
this robot control system adjusts the vehicle’s position and
direction every 25ms. Therefore using NTPD can satisfy this
requirement.

On the other hand, we also measure the average CPU
usage of PC1 while this experiment and compare it to the
case of SSM in which all processes are running on PC1
for comparison. PC1 is in charge of controlling the vehicle
while PC2 is in charge of estimating the vehicle’s position
and direction. PC3 is in charge of showing the status of the
vehicle using three sensor data. Sensor data are measured on
PC1 and PC2.

As an evaluation, we confirmed the behavior of vehicle
with DSSM, in which we could not find any big differences
of behaviors using SSM with visual observation, meaning
that DSSM was working without any problems. Besides, we
show the CPU usage of PC1 in Table II. On the whole,
DSSM could decrease CPU usage of PC1 compared to SSM.
However, two elements such as system and iowait in DSSM
were increased. This is because DSSM uses additional I/O
(i.e., network) and system calls compared to SSM. Based
on these results, the effect of DSSM seems to be limited,
however, we do not use a camera and/or other sensors that
might consume CPU intensively. We need to extend these
experiments to show the effectiveness of DSSM in the future.

865

V. RELATED WORK

ROS [7] [8] is a middleware system that adopts the
publish/subscribe model. ROS processes are represented as
nodes and each node constitutes a graph structure, meaning
that each node can directly connect each other. In ROS,
a node uses TCP connections for IPCs. Thereby if two
nodes are running on the same PC, they must connect using
TCP connections, leading to a certain delay. Meanwhile,
ROS provides a method to share data in a single process,
resulting in minimizing the delay. In this case, however, all
functions that are required to control a robot should be run
in a single process as threads, leading to tightly-coupled
relations among them, that is not suitable for modularity
view point. Besides, ROS is not in charge of timestamps,
therefore developers need to handle them by themselves.

RTM [3] [9] is also a middleware system. Similar to ROS,
in RTM, processes are represented as RT-Components and
each RT-Component communicates using CORBA. Since
CORBA uses TCP connections, using RTM will encounter
a certain delay because of the same reason as ROS, RTM is
also not in charge of timestamps of measured data.

Compared to these middleware systems, as shown in
Figure 3, DSSM allows developers to combine two types of
IPCs: shared memories and TCP connections, as they prefer.
For example, if two processes require high-speed com-
munications between them, developers can choose shared
memories in a single PC. On the other hand, if a process
will intensively consume resources, developers can easily
separate the process on a different PC and choose TCP com-
munications. Moreover, DSSM is in charge of timestamps
for measured sensor data. Besides, if developers already use
SSM as a middleware system, they can easily introduce
DSSM will small changes.

VI. CONCLUSIONS

With the demand of robots, middleware systems are now
developed and used to decrease the development cost of
software systems which control robots. SSM is one of such
middleware systems that provide a method to write/read data
with timestamps. The current SSM assumes that all programs
that control a robot run in a single PC as different pro-
cesses. Thereby one heavy program (process) that intensively
consumes CPU resource affects other programs, leading to
unexpected results of the robot control.

This paper proposes DSSM that makes it possible to run
the programs in different PCs. DSSM provides two types
of IPCs: shared memories and TCP connections. Therefore
developers can choose and/or combine these IPCs based on
the requirements that are new points of DSSM different from
existing middleware systems such as ROS. We consider and
propose three additional core components to achieve this
goal while existing software systems need not be modified
as much as possible. We give a prototype implementation
of DSSM and apply it to the existing software system that
autonomously controls an unmanned vehicle. We conducted
a basic experiment and the result of which shows DSSM
works fine and slightly decreases CPU usage.

Regarding future work, we should conduct more exper-
iments with real use cases and verify the effectiveness of
DSSM. Also, we should add more useful tools such as
monitoring systems for developers to use DSSM easily.

REFERENCES

[1] Streaming data Sharing Manager (SSM),
https://www.roboken.iit.tsukuba.ac.jp/platform/wiki/ssm/index,
2019/11/1 accessed.

[2] Tomoyoshi Eda, Tadahiro Hasegawa, Shingo Nakamura and Shinichi
Yuta, Development of Autonomous Mobile Robot “MML-05” Based
on i-Cart Mini for Tsukuba Challenge 2015, Journal of Robotics and
Mechatronics, Vol.28 No.4, pp.461-469, 2016.

[3] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and Woo-Keun Yoon.
2005. RT-middleware: distributed component middleware for RT
(robot technology). In 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 3933-3938.

[4] Noriaki Ando, Shinji Kurihara, Geoffrey Biggs, Takeshi Sakamoto,
Hiroyuki Nakamoto, ”Software Deployment Infrastructure for Com-
ponent Based RT-Systems”, Journal of Robotics and Mechatronics,
Vol.23, No.3, pp.350-359, 2011.06

[5] Michael Goodrich and Alan Schultz. 2007. Human-Robot Interaction:
A Survey. Foundations and Trends in Human-Computer Interaction 1
(01 2007), 203–275.

[6] James Kramer and Matthias Scheutz. 2007. Development environ-
ments for autonomous mobile robots: A survey. Autonomous Robots
22, 2 (01 Feb 2007), 101–132.

[7] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. 2009. ROS: an open-
source Robot Operating System. In ICRA Workshop on Open Source
Software.

[8] Yuya Maruyama, Shinpei Kato and Takuya Azumi, Exploring the
Performance of ROS2, In Proceedings of the 13th International Con-
ference on Embedded Software, 2016.

[9] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku and Woo-Keun Yoon,
”Composite component framework for RT-middleware (robot tech-
nology middleware),” Proceedings, 2005 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics., Monterey, CA,
2005, pp. 1330-1335.

[10] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM 21, 7 (July 1978), 558-565.

[11] David L. Mills, Computer Network Time Synchronization: The Net-
work Time Protocol, CRC Press, 2006.

[12] Mukesh Singhal and Ajay Kshemkalyani. 1992. An efficient imple-
mentation of vector clocks. Inf. Process. Lett. 43, 1 (August 1992),
47-52.

866

